Search results

Search for "dynamic mode" in Full Text gives 35 result(s) in Beilstein Journal of Nanotechnology.

Enhanced feedback performance in off-resonance AFM modes through pulse train sampling

  • Mustafa Kangül,
  • Navid Asmari,
  • Santiago H. Andany,
  • Marcos Penedo and
  • Georg E. Fantner

Beilstein J. Nanotechnol. 2024, 15, 134–143, doi:10.3762/bjnano.15.13

Graphical Abstract
  • been introduced [2][3]. Although these methods are gentler than contact mode, interpreting and controlling the vertical force exerted on the sample is not straightforward. To achieve a better tip–sample force control, Rosa-Zeiser et al. [4] presented an off-resonance dynamic mode called pulsed force
  • force mode, resulting in a significant drop of the applied lateral force [5]. de Pablo et al. presented jumping mode [6], an off-resonance dynamic mode where they synchronize the acquisition of the force curves with the advancement in the fast scan direction. In a follow-up paper, Ortega-Esteban et al
PDF
Album
Supp Info
Full Research Paper
Published 01 Feb 2024

Quantitative dynamic force microscopy with inclined tip oscillation

  • Philipp Rahe,
  • Daniel Heile,
  • Reinhard Olbrich and
  • Michael Reichling

Beilstein J. Nanotechnol. 2022, 13, 610–619, doi:10.3762/bjnano.13.53

Graphical Abstract
  • be strictly parallel to Furthermore, we assume an infinitely stiff sensor in directions perpendicular to as well as a linear sensor response along Then, the static probe response follows Hooke’s law with k being the static sensor force constant [18]. In dynamic mode operation, the sensor is
PDF
Album
Full Research Paper
Published 06 Jul 2022

Two dynamic modes to streamline challenging atomic force microscopy measurements

  • Alexei G. Temiryazev,
  • Andrey V. Krayev and
  • Marina P. Temiryazeva

Beilstein J. Nanotechnol. 2021, 12, 1226–1236, doi:10.3762/bjnano.12.90

Graphical Abstract
  • -scanner vertically, maintains A = Asp. During scanning each line, lateral movement (in the X or Y direction) is performed at a constant speed V. This is the most common dynamic mode, which is called amplitude modulation (AM-AFM) [7] and has many other names (e.g., tapping mode or semi-contact mode). The
PDF
Album
Supp Info
Full Research Paper
Published 15 Nov 2021

An atomic force microscope integrated with a helium ion microscope for correlative nanoscale characterization

  • Santiago H. Andany,
  • Gregor Hlawacek,
  • Stefan Hummel,
  • Charlène Brillard,
  • Mustafa Kangül and
  • Georg E. Fantner

Beilstein J. Nanotechnol. 2020, 11, 1272–1279, doi:10.3762/bjnano.11.111

Graphical Abstract
  • for the combination of AFM and HIM. While much progress has been made towards increasing the imaging speed of AFM [46][47][48][49][50], most of this progress has been limited to imaging in liquid, due to the inherent bandwidth limitation of cantilevers when using them in dynamic mode in vacuum. Recent
PDF
Album
Full Research Paper
Published 26 Aug 2020

Current measurements in the intermittent-contact mode of atomic force microscopy using the Fourier method: a feasibility analysis

  • Berkin Uluutku and
  • Santiago D. Solares

Beilstein J. Nanotechnol. 2020, 11, 453–465, doi:10.3762/bjnano.11.37

Graphical Abstract
  • in conventional dynamic mode applications [note that in Equation 10 the an values are proportional to the inverse of (1 − n2)]. The analysis of the cantilever trajectory and its higher harmonic responses are discussed in detail in [34][35][36][37][38][39]. The higher harmonics (i.e., a2, a3,…) have
PDF
Album
Full Research Paper
Published 13 Mar 2020

Nonclassical dynamic modeling of nano/microparticles during nanomanipulation processes

  • Moharam Habibnejad Korayem,
  • Ali Asghar Farid and
  • Rouzbeh Nouhi Hefzabad

Beilstein J. Nanotechnol. 2020, 11, 147–166, doi:10.3762/bjnano.11.13

Graphical Abstract
  • nanoparticle up to the final position could be simulated [7]. Moradi et al. modeled the manipulation of cylindrical nanoparticles by means of AFM and a classical continuum mechanics approach. It was determined that there exists a difference between the dynamic mode of nano- and microbars. They found that the
  • dominant dynamic mode for microrods and nanorods are rolling and sliding, respectively [8]. In a further development in modeling the manipulation process, Babahosseini et al. presented a 2D model by considering the influential parameters in nanoscale modeling. They employed the modified Coulomb and Lund
PDF
Album
Full Research Paper
Published 13 Jan 2020

A review of demodulation techniques for multifrequency atomic force microscopy

  • David M. Harcombe,
  • Michael G. Ruppert and
  • Andrew J. Fleming

Beilstein J. Nanotechnol. 2020, 11, 76–91, doi:10.3762/bjnano.11.8

Graphical Abstract
  • within dynamic mode AFM. It involves studying multiple frequency components in the cantilever oscillation during tip–sample interactions [13]. Observing higher eigenmodes of the cantilever [14], higher harmonics of the fundamental resonance [15] and intermodulation products [16] have been shown to
PDF
Album
Review
Published 07 Jan 2020

Abrupt elastic-to-plastic transition in pentagonal nanowires under bending

  • Sergei Vlassov,
  • Magnus Mets,
  • Boris Polyakov,
  • Jianjun Bian,
  • Leonid Dorogin and
  • Vahur Zadin

Beilstein J. Nanotechnol. 2019, 10, 2468–2476, doi:10.3762/bjnano.10.237

Graphical Abstract
  • . In 2/3 of the cases, plastic yield was reported. However, it should be noted that loading was applied in dynamic mode, i.e., the probe was oscillating at a frequency of around 32 kHz and the amplitude of the oscillations was comparable to the diameter of the NWs. Therefore, it is difficult to exclude
  • strength for smaller diameters (size effect) can be noticed. For Ag NWs, the results are in good accordance with experimental yield strength values obtained for Ag NWs using the similar cantilever beam configuration [28]. It should be noted that measurements in [28] were performed in dynamic mode, that is
PDF
Album
Supp Info
Full Research Paper
Published 12 Dec 2019

Atomic force acoustic microscopy reveals the influence of substrate stiffness and topography on cell behavior

  • Yan Liu,
  • Li Li,
  • Xing Chen,
  • Ying Wang,
  • Meng-Nan Liu,
  • Jin Yan,
  • Liang Cao,
  • Lu Wang and
  • Zuo-Bin Wang

Beilstein J. Nanotechnol. 2019, 10, 2329–2337, doi:10.3762/bjnano.10.223

Graphical Abstract
  • biomechanical studies [21]. Atomic force acoustic microscopy (AFAM) is a technique based on AFM for nondestructive imaging. This technique operates on a dynamic mode in which the AFM cantilever vibrates upon ultrasound excitation. Accordingly, AFAM shows the ability to measure nanomechanical properties and is
PDF
Album
Supp Info
Full Research Paper
Published 26 Nov 2019

Nanoscale spatial mapping of mechanical properties through dynamic atomic force microscopy

  • Zahra Abooalizadeh,
  • Leszek Josef Sudak and
  • Philip Egberts

Beilstein J. Nanotechnol. 2019, 10, 1332–1347, doi:10.3762/bjnano.10.132

Graphical Abstract
  • 120 °C for two hours. Subsequently, the HOPG samples were transferred into the AFM chamber, where two dynamic mode AFM experiments were conducted. Silicon probes with an integrated tip (Nanosensors PPP-CONT) were used as force sensors. The normal bending and the lateral twisting spring constants of
  • knowledge of the employed dynamic mode. We focus on converting the obtained surface displacement into elastic modulus in this manuscript. Here, the conversion of the measured oscillation voltage signal (surface displacements) to nanometers was realized by the optical sensitivity of the quadrant detector as
PDF
Album
Full Research Paper
Published 03 Jul 2019

In situ characterization of nanoscale contaminations adsorbed in air using atomic force microscopy

  • Jesús S. Lacasa,
  • Lisa Almonte and
  • Jaime Colchero

Beilstein J. Nanotechnol. 2018, 9, 2925–2935, doi:10.3762/bjnano.9.271

Graphical Abstract
  • . 2 kHz), which maintained the cantilever at resonance. Images and spectroscopy were acquired using the frequency as signal for the feedback channel (frequency-modulation dynamic mode; FM-DAFM [49]) at small oscillation, which generally implies non-contact operation (so-called attractive regime), for
PDF
Album
Full Research Paper
Published 23 Nov 2018

Effective sensor properties and sensitivity considerations of a dynamic co-resonantly coupled cantilever sensor

  • Julia Körner

Beilstein J. Nanotechnol. 2018, 9, 2546–2560, doi:10.3762/bjnano.9.237

Graphical Abstract
  • Julia Korner University of Utah, 50 S. Central Campus Dr #2110, Salt Lake City, Utah, 84112, USA 10.3762/bjnano.9.237 Abstract Background: Co-resonant coupling of a micro- and a nanocantilever can be introduced to significantly enhance the sensitivity of dynamic-mode cantilever sensors while
  • Dynamic-mode cantilever sensors are used for many different applications which include the detection of smallest masses [1][2], in situ observation of the growth of biological films [3], detection of trace analytes in gases (”artificial nose”) [4] and the investigation of properties of novel (nano
  • )materials by scanning probe methods or magnetometry [5][6][7]. In contrast to static-mode operation, where the static bending of cantilever sensors is used as a measurement signal, the dynamic mode is based on exciting the beam to vibrations and monitoring its amplitude, resonance frequency and phase shift
PDF
Album
Supp Info
Full Research Paper
Published 25 Sep 2018

A robust AFM-based method for locally measuring the elasticity of samples

  • Alexandre Bubendorf,
  • Stefan Walheim,
  • Thomas Schimmel and
  • Ernst Meyer

Beilstein J. Nanotechnol. 2018, 9, 1–10, doi:10.3762/bjnano.9.1

Graphical Abstract
  • from macroscopical experiments, difficulties in the precise determination of the elastic modulus based on the theoretical model, or during the use of the method may be encountered when using dynamic-mode AFM. This is the case with the methods devised by Hurley and Turner [6] and Herruzo and co-workers
  • distribution of the elastic modulus for each map in Figure 6b and Figure 7b. Because polymers are viscoelastic materials, the elastic modulus Eeff,meas measured on the investigated samples in dynamic mode corresponds to the storage modulus. As the measured contact resonances are quite large compared to the
  • viscoelastic materials, the elastic modulus Eeff,meas measured in dynamic mode corresponds to the storage modulus. We assumed a frequency independence of the measured storage modulus as the measured contact resonances are quite large compared to the inverse of typical material relaxation times. The
PDF
Album
Supp Info
Full Research Paper
Published 02 Jan 2018

High-speed dynamic-mode atomic force microscopy imaging of polymers: an adaptive multiloop-mode approach

  • Juan Ren and
  • Qingze Zou

Beilstein J. Nanotechnol. 2017, 8, 1563–1570, doi:10.3762/bjnano.8.158

Graphical Abstract
  • control techniques, is promising to achieve high-speed dynamic-mode atomic force microscopy imaging. The performance, usability, and robustness of the AMLM in various imaging applications, however, is yet to be assessed. In this work, three benchmark polymer samples, including a PS–LDPE sample, an SBS
  • cost of a substantially (over five times) increased imaging force. By using the AMLM imaging mode, it is aimed to achieve high-speed dynamic-mode AFM imaging while maintaining the tip–sample interaction force similar as that in low-speed TM imaging. The speed increase of TM imaging is limited by the
  • damage due to the lack of control of the tip–sample interaction force [7][8][16]. Therefore, current efforts to high-speed dynamic-mode AFM imaging only led to rather limited success. The presented AMLM imaging approach can achieve high-speed TM imaging for both large- and small-size imaging while
PDF
Album
Full Research Paper
Published 02 Aug 2017

Functional dependence of resonant harmonics on nanomechanical parameters in dynamic mode atomic force microscopy

  • Federico Gramazio,
  • Matteo Lorenzoni,
  • Francesc Pérez-Murano,
  • Enrique Rull Trinidad,
  • Urs Staufer and
  • Jordi Fraxedas

Beilstein J. Nanotechnol. 2017, 8, 883–891, doi:10.3762/bjnano.8.90

Graphical Abstract
PDF
Album
Supp Info
Full Research Paper
Published 19 Apr 2017

Multimodal cantilevers with novel piezoelectric layer topology for sensitivity enhancement

  • Steven Ian Moore,
  • Michael G. Ruppert and
  • Yuen Kuan Yong

Beilstein J. Nanotechnol. 2017, 8, 358–371, doi:10.3762/bjnano.8.38

Graphical Abstract
  • tip at the free end of a cantilever to interrogate and image the surface of a sample [11][12][13]. When using the AFM in dynamic mode [14], the cantilever is excited at its fundamental modal frequency and the probe lightly taps the surface of the sample. Observed changes in the amplitude, phase or
PDF
Album
Full Research Paper
Published 06 Feb 2017

Studying friction while playing the violin: exploring the stick–slip phenomenon

  • Santiago Casado

Beilstein J. Nanotechnol. 2017, 8, 159–166, doi:10.3762/bjnano.8.16

Graphical Abstract
  • same protocol. All AFM characterizations were made in air and ambient conditions, operating in dynamic mode. NT-MDT NSG01 cantilevers of around 150 kHz and 5 N/m, and tips of 6 nm typical radius, were used. Two-dimensional Fourier transforms were obtained using Gwyddion software. The samples were
PDF
Album
Full Research Paper
Published 16 Jan 2017

Dynamic of cold-atom tips in anharmonic potentials

  • Tobias Menold,
  • Peter Federsel,
  • Carola Rogulj,
  • Hendrik Hölscher,
  • József Fortágh and
  • Andreas Günther

Beilstein J. Nanotechnol. 2016, 7, 1543–1555, doi:10.3762/bjnano.7.148

Graphical Abstract
  • -control. Keywords: anharmonic motion; cold-atom scanning probe microscopy; dephasing; dynamic mode; tip oscillation; Introduction The development of novel scanning probe techniques has lead to tremendous improvements in investigating nanomaterials [1]. Starting with conventional force and tunneling
PDF
Album
Full Research Paper
Published 31 Oct 2016

Direct formation of gold nanorods on surfaces using polymer-immobilised gold seeds

  • Majid K. Abyaneh,
  • Pietro Parisse and
  • Loredana Casalis

Beilstein J. Nanotechnol. 2016, 7, 809–816, doi:10.3762/bjnano.7.72

Graphical Abstract
  • microscopy (AFM) images were recorded using a NTMDT Solver Pro instrument. We have operated it in dynamic mode with silicon cantilevers (NSG30-NTMDT, force constant 40 N/m) which were working at their resonance frequency with an oscillation amplitude in the range of 100–200 nm. Scanning electron microscopy
PDF
Album
Full Research Paper
Published 06 Jun 2016
Graphical Abstract
  • Santiago D. Solares Department of Mechanical and Aerospace Engineering, George Washington University, Washington, DC 20052, United States 10.3762/bjnano.7.49 Abstract Significant progress has been accomplished in the development of experimental contact-mode and dynamic-mode atomic force
PDF
Album
Supp Info
Full Research Paper
Published 15 Apr 2016

Efficiency improvement in the cantilever photothermal excitation method using a photothermal conversion layer

  • Natsumi Inada,
  • Hitoshi Asakawa,
  • Taiki Kobayashi and
  • Takeshi Fukuma

Beilstein J. Nanotechnol. 2016, 7, 409–417, doi:10.3762/bjnano.7.36

Graphical Abstract
  • /bjnano.7.36 Abstract Photothermal excitation is a cantilever excitation method that enables stable and accurate operation for dynamic-mode AFM measurements. However, the low excitation efficiency of the method has often limited its application in practical studies. In this study, we propose a method for
  • ; dynamic mode; photothermal conversion; photothermal excitation; Introduction Atomic force microscopy (AFM) [1] is an analytical technique to investigate nanoscale surface structures and local physical properties of various samples. Dynamic-mode AFM has attracted considerable interests in various fields
  • due to its great potential for many applications. For example, recent advancements in instrumentation of dynamic-mode AFM have enabled atomic-resolution imaging not only in vacuum [2][3][4] but also in liquid [5][6]. In addition, other advanced AFM techniques such as high-speed AFM [7][8][9] and
PDF
Album
Supp Info
Full Research Paper
Published 10 Mar 2016

High-bandwidth multimode self-sensing in bimodal atomic force microscopy

  • Michael G. Ruppert and
  • S. O. Reza Moheimani

Beilstein J. Nanotechnol. 2016, 7, 284–295, doi:10.3762/bjnano.7.26

Graphical Abstract
  • capacitive feedthrough. In order to use the charge sensor for dynamic mode AFM, the eigenmodes need to be recovered from the capacitive feedthrough. Here, an analog feedforward compensation method was employed based on the block diagram shown in Figure 4. It can be seen in Figure 7a how this compensation
PDF
Album
Full Research Paper
Published 24 Feb 2016

Improved atomic force microscopy cantilever performance by partial reflective coating

  • Zeno Schumacher,
  • Yoichi Miyahara,
  • Laure Aeschimann and
  • Peter Grütter

Beilstein J. Nanotechnol. 2015, 6, 1450–1456, doi:10.3762/bjnano.6.150

Graphical Abstract
  • damping of the cantilever, leading to a lower mechanical quality factor (Q-factor). In dynamic mode operation in high vacuum, a cantilever with a high Q-factor is desired in order to achieve a lower minimal detectable force. The reflective coating can also increase the low-frequency force noise. In
PDF
Album
Supp Info
Full Research Paper
Published 03 Jul 2015

A scanning probe microscope for magnetoresistive cantilevers utilizing a nested scanner design for large-area scans

  • Tobias Meier,
  • Alexander Förste,
  • Ali Tavassolizadeh,
  • Karsten Rott,
  • Dirk Meyners,
  • Roland Gröger,
  • Günter Reiss,
  • Eckhard Quandt,
  • Thomas Schimmel and
  • Hendrik Hölscher

Beilstein J. Nanotechnol. 2015, 6, 451–461, doi:10.3762/bjnano.6.46

Graphical Abstract
  • , atomic step edges of 2.54 Å height are resolved. For dynamic-mode experiments, the phase-shift signal is of high interest as it provides information about energy dissipation between tip and sample [60][61] and visualizes chemical contrasts [62]. To demonstrate this kind of measurement also with our TMR
  • step-edges on gold(111) terraces can be revealed by amplitude modulation imaging with the feedback on the TMR sensor. Dynamic mode imaging of FDTS-SAM samples using a TMR sensor with the feedback on amplitude and phase. a) Amplitude modulation mode imaging of FDTS-SAM in SiOx with a TMR sensor. On this
PDF
Album
Video
Full Research Paper
Published 13 Feb 2015

Boosting the local anodic oxidation of silicon through carbon nanofiber atomic force microscopy probes

  • Gemma Rius,
  • Matteo Lorenzoni,
  • Soichiro Matsui,
  • Masaki Tanemura and
  • Francesc Perez-Murano

Beilstein J. Nanotechnol. 2015, 6, 215–222, doi:10.3762/bjnano.6.20

Graphical Abstract
  • with good control of dimensions and placement. LAO through the non-contact mode of atomic force microscopy (AFM) has proven to yield a better resolution and tip preservation than the contact mode and it can be effectively performed in the dynamic mode of AFM. The tip plays a crucial role for the LAO
  • tip apex of AFM probes for the application of LAO on silicon substrates in the AFM amplitude modulation dynamic mode of operation. We show the good performance of CNF-AFM probes in terms of resolution and reproducibility, as well as demonstration that the CNF apex provides enhanced conditions in terms
  • of field-induced, chemical process efficiency. Keywords: carbon nanofiber; dynamic mode; local anodic oxidation; nanopatterning; Introduction Scanning probe lithography (SPL) is increasing its relevance among currently employed methods towards miniaturization and investigations at the nanometer
PDF
Album
Full Research Paper
Published 19 Jan 2015
Other Beilstein-Institut Open Science Activities